
Know-how | JavaScript-Framework Vue.js

c’t 2018, Heft 19

Das JavaScript-Framework Vue.js
hat sich ohne die Unterstützung
eines großen Unternehmens zu
einem ernsthaften Konkurrenten
für Angular und React gemausert.
Das liegt auch an der gleichmäßigen
Lernkurve für Vue-Einsteiger: Nach
dem problemlosen Start kann sich
der angehende Vue-Entwickler
allmählich hocharbeiten – wie
unser Praxisbeispiel zeigt.

Von Herbert Braun

E s gibt viele Gründe, die Vue.js inner-
halb weniger Jahre zu einem der be-

liebtesten Frontend-Frameworks gemacht
haben – in einem Feld, in dem es wahrlich
starke Konkurrenten gibt. Vue-Erfinder
Evan You beschreibt das Erfolgsrezept des
Frameworks folgendermaßen: „Wie wäre
es, wenn ich den Teil con Angular nehme,
der mir wirklich gefällt, und etwas Leicht-
gewichtiges ohne die ganzen Extra-Kon-
zepte drumherum baue?“ Um Vue.js ken-
nenzulernen, haben wir unser mit React
entwickeltes Beispiel aus [1] mit Vue.js
neu umgesetzt: ein HTML-Quiz, bei dem
der Spieler innerhalb einer vorgegebenen
Zeit möglichst viele HTML-Elemente ein-
tippen soll.

Erstflug
Die ersten Gehversuche beginnen mit
einem leeren HTML-Rahmen:

<!doctype html>

<html lang="de">

<head>

<meta charset="utf-8">

<title>HTML-Spiel</title>

<link rel="stylesheet"

href="htmlgame.css">

</head>

<body>

<noscript>JavaScript benötigt

</noscript>

Bi
ld

: A
lb

er
t

H
ul

m
, I

llu
st

ra
to

r

Web-App-Zauberkasten
Dynamische Webanwendungen mit Vue.js

178

ct.1918.178-183.neu1.qxp 24.08.18 11:39 Seite 178

© Copyright by Heise Medien
Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

JavaScript-Framework Vue.js | Know-how

c’t 2018, Heft 19 179

<main></main>

<script src="vue.js"></script>

<script src="htmlgame.js">

</script>

</body>

</html>

Das <main>-Element ist der Platzhalter für
die Anwendung selbst. Das CSS spielt für
das Projekt keine Rolle; im Repository
unter ct.de/yhet können Sie ein Stylesheet
und alle übrigen Projektdaten herunterla-
den. Vue.js können Sie von https://vuejs.org
/js/vue.js (oder /vue.min.js für die mini-
fizierte Version) beziehen. Alternativ lässt
sich Vue.js aus dem CDN direkt einbin-
den. Bei Bower und npm heißt es jeweils
schlicht „vue“. So oder so sollten Sie nun
in der Skriptdatei htmlgame.js auf das Ob-
jekt Vue zugreifen können.

Am einfachsten lässt sich Vue mit
HTML-Templates nutzen. Für ein „Hallo
Welt“ setzen Sie in das <main>-Element
folgende Zeile ein:

<p>{{hallowelt}}</p>

Das passende Skript dazu lautet:

const test = new Vue({

el: 'main',

data: {

hallowelt: 'Hallo, Welt!'

}

})

Sie erzeugen also eine Vue-Instanz, der
Sie ein HTML-Element el als Geltungs -
bereich zuweisen. Dieses beschreiben Sie
durch einen CSS-Selektor, der in diesem
Fall das <main>-Element referenziert (Sie
könnten zum Beispiel auch '#id' oder
'.class' nehmen). Wenn es mehrere pas-
sende Elemente gäbe, wählt Vue das erste.

Die data-Eigenschaft listet Variablen
auf, die Vue bei Änderungen automatisch
aktualisiert. hallowelt enthält einen simp-
len String, zulässig wären auch andere
Java Script-Datentypen. Im Template gibt
es je nach Einsatzzweck unterschiedliche
Wege, die Vue-Variablen zu referenzieren;
bei Textinhalten stehen sie in doppelten
geschweiften Klammern.

Wenn Sie die HTML-Datei im
Browser öffnen, hat Vue den Variablen-
wert ins Markup eingesetzt – auch mehr-
fach, wenn Sie hallowelt innerhalb von
<main> öfter referenzieren. Öffnen Sie nun
die Entwicklerwerkzeuge des Browsers
und geben Sie in der Konsole Folgendes
ein:

test.hallowelt = 'Hallo, Vue!'

Daraufhin aktualisiert sich die Seite. Vue
hat dem Vue-Objekt test als Eigenschaft
hallowelt zugewiesen umd setzt Änderun-
gen ihres Wertes sofort in HTML um. In
der Vue-Terminologie ist diese Variable
„reaktiv“.

Nach dem gleichen Muster bauen Sie
auch komplexere Anwendungen. In der
Template-Sprache legen Sie HTML-Attri-
bute, Events, Bedingungen, Schleifen und
bidirektionale Datenbindungen (Two-way
binding) fest; das Skript verwaltet Varia-
blen sowie die dazugehörigen Methoden.

Spielprojekt
Dieses Repertoire werden Sie im Beispiel-
projekt genauer kennenlernen. Dabei
müssen diverse Komponenten Werte ak-
tualisieren und miteinander Informatio-
nen austauschen.

Im Mittelpunkt der Anwendung steht
ein Eingabefeld. Entspricht der dort ein-
gegebene Text dem Namen eines bislang
noch nicht eingetippten HTML-Elements,
fügt das Skript es der Trefferliste hinzu. Ein
Zähler und eine Liste der bereits gefunde-
nen Elemente informieren über den aktu-
ellen Spielstand. Mit der ersten Eingabe
startet ein Timer mit einer vorgegebenen
Zeit. Nach dem Spielende zeigt das Skript
die gefundenen und die übersehenen Ele-
mente an und errechnet einen Score.

Das HTML-Template (wiederum in-
nerhalb von <main>) des Eingabefeldes
sieht folgendermaßen aus:

<input type="text" autofocus

v-bind:disabled="inputDisabled"

v-model:value="inputValue"

v-on:input="handleInput">

Der passende Skript-Code ist nicht viel
komplizierter als im vorigen Beispiel:

const game = new Vue({

el: 'main',

data: {

inputValue: '',

inputDisabled: false

},

methods: {

handleInput: function() {

console.log(this.inputValue);

}

}

})

Falls Sie im Template vergeblich die dop-
pelten geschweiften Klammern aus dem
letzten Beispiel gesucht haben: Innerhalb
eines Elements referenzieren Sie die Vue-
Variablen stattdessen über spezielle Attri-

bute, die mit v- beginnen. v-bind holt
einen Attributwert ins Element, in diesem
Beispiel (v-bind:disabled) für das disab-
led-Attribut. Dieses erwartet in inputDis-
abled einen Boole-Wert, der festlegt, ob
das Eingabefeld benutzbar ist oder nicht.

v-bind hat mit dem obigen {{hallo-
welt}}-Beispiel die Einweg-Bindung ge-
meinsam: Ein neuer Wert der App-Varia-
blen landet sofort im Markup. Aber sollte
sich der Wert dort zum Beispiel durch eine
DOM-Manipulation ändern, bekommt
Vue nichts davon mit. Eine Zweiwege-Bin-
dung bringt erst v-model ins Spiel: Aktua-
lisieren Sie game.inputValue, ändert sich
der Wert im Eingabefeld; tippen Sie dort
etwas hinein, betrifft das wiederum die
App-Variable.

Mit v-on fangen Sie Events ab – hier
das input-Ereignis. Den zuständigen
Handler handleInput legen Sie unter me-
thods an. Dafür sollten Sie übrigens nicht
die moderne Pfeil-Syntax (handleInput:
() => {…}) verwenden, weil Sie häufig this
verwenden werden, um aufs App-Objekt
zu verweisen. Auf diese Weise kommen
Sie zum Beispiel in einer Methode an die
in data aufgelisteten Variablen heran. Die
Dummy-Funktion im Listing schreibt erst
einmal nur den aktuellen Stand der Ein-
gabe in die Konsole.

Die häufig benötigten Attribute v-bind
und v-on lassen sich abkürzen:

<input :disabled="inputDisabled"

@input="handleInput">

Statt v-bind:attribut genügt :attribut, v-
on:event lässt sich durch @event ersetzen.

Spieldaten
Um weiterzumachen, benötigen Sie die
Spieldaten – also die Daten mit den Infor-
mationen zu den HTML-Elementen. Ko-
pieren Sie die 8 KByte große Datei game-
data.js aus unserem GitHub-Repository
und binden Sie sie in Ihr Projekt vor
htmlgame.js ein:

<script src="gamedata.js"></script>

Um die Ergebnisse schön aufzubereiten
und zusätzlich experimentelle und veral-
tete Elemente hereinzuholen, enthält die
Datei mehr als nur eine Liste der HTML-
Elementnamen:

const gamedata = [

{

name: 'Metadaten',

elements: [

{name: 'head',

ct.1918.178-183.neu1.qxp 24.08.18 11:39 Seite 179

© Copyright by Heise Medien
Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

Know-how | JavaScript-Framework Vue.js

c’t 2018, Heft 19180

role: 'metadata container'},

{name: 'title',

role: 'document title'},

/*...*/

]

}, /*...*/, {

name: 'Veraltet',

value: 'malus',

elements: [

{name: 'font',

role: 'use CSS instead'},

/*...*/

}, {

name: 'Experimentell',

value: 'bonus',

elements: [/*...*/]

}

]

gamedata ist also ein Array von Objekten,
die verschiedene Gruppen wie „Metada-
ten“, „Abschnitte“, „Tabellen“, „eingebet-
tete Inhalte“ als name haben; für „Veraltet“
und „Experimentell“ ist zusätzlich noch
ein value definiert. elements ist wiederum
ein Array, das die einzelnen Elemente mit
name und role beschreibt.

Um rasch nachzuschlagen, ob die Ein-
gabe einem noch nicht gefundenen Ele-
mentnamen entspricht, empfiehlt sich al-
lerdings eine einfachere Struktur – zum
Beispiel je ein Set für veraltete, experi-
mentelle und Standardelemente. Sets sind
unsortierte Kollektionen von Werten, die
keine Doppelungen akzeptieren:

const els = {}

const groups = ['html5',

'experimental', 'deprecated'];

groups.forEach(group =>

els[group] = new Set());

gamedata.forEach(group => {

if (group.value === 'bonus')

group.elements.map(el =>

els.experimental.add(el.name));

else if (group.value === 'malus')

group.elements.map(el =>

els.deprecated.add(el.name));

else

group.elements.map(el =>

els.html5.add(el.name));

});

Das Objekt els enthält nun die drei Sets
html5, experimental und deprecated. Jedes
von ihnen hat eine Reihe von HTML-Ele-
mentnamen als Werte.

Schlüsselsuche
Damit lässt sich der Kern des Spielprinzips
umsetzen. Ergänzen Sie dazu als Erstes
drei leere Arrays in data, die genauso hei-
ßen wie die drei Gruppen:

data: {

/*...*/

html5: [],

experimental: [],

deprecated: []

}

In diesem Fall brauchen Sie Arrays, da
die Ausgabe sortiert erfolgen soll. In der
handle Input()-Methode überprüfen Sie
nun, ob sich die Eingabe mit einem be-
kannten Element deckt:

handleInput: function() {

groups.some(group => {

if (els[group].

has(this.inputValue)) {

if (this[group].indexOf(this.

inputValue) < 0) {

this[group] = this[group].

concat(this.inputValue).sort();

this.inputValue = '';

}

return true;

}

});

}

Die Methode some() durchläuft (ähnlich
wie das bekanntere forEach()) das groups-
Array, bricht aber ab, sobald die Callback-
Funktion true zurückgibt. Das Callback ist
bewusst als Pfeil-Funktion geschrieben,
damit es das this der Elternfunktion über-
nimmt. Das äußere if prüft, ob der Inhalt
der Eingabe this.inputValue in der jewei-
ligen Map els[group] vorhanden ist. Falls
ja, bricht return true die weiteren Such-
durchläufe ab.

Zuvor sucht aber das innere if im pas-
senden data-Array this[group] nach dem
betreffenden Element. Existiert es dort
nicht (indexOf(…) < 0), fügt concat() es
dem Array hinzu, das gleich für die spätere
Ausgabe neu sortiert wird (sort()). Die
nächste Zeile setzt das Eingabefeld zurück.

Wenn Sie nun ein neues HTML-Ele-
ment eintippen, leert sich das Eingabe-
feld. In der Konsole oder mit einer der
Vue-Entwickler-Erweiterungen für Chrome
und Firefox können Sie verfolgen, wie
game.html5 und die anderen beiden Arrays
allmählich wachsen.

Zähler und Ausgabe
Um das zu visualisieren, können Sie mit
einfachen Mitteln einen Zähler in die
Oberfläche einbauen:

<div id="counter">{{done}} von

{{todo}}</div>

Ergänzen Sie nun die beiden Variablen in
data:

data: {

/*...*/

todo: els.html5.size,

done: this.html5.length

}

todo enthält die Gesamtzahl der HTML5-
Elemente im Set, done bezieht sich auf das
Vue-Array html5 mit den bereits gefunde-
nen Elementen. Wenn Sie die Seite nun
neu laden, sehen Sie … einen JavaScript-
Fehler: Vue kann noch nicht auf
this.html5 zugreifen, wenn es die Varia-
blen einliest. Die Lösung dafür ist die com-
puted-Eigenschaft, die neben data und me-
thods auf der obersten Ebene des Vue-Ob-
jekts steht – damit können Sie aus reakti-
ven Variablen neue berechnen:

Vue.js trickst beim Rendern
und tauscht nur Inhalte aus
(links) – falls Wertelisten
nicht eindeutige Schlüssel
enthalten (rechts).

ct.1918.178-183.neu1.qxp 24.08.18 11:39 Seite 180

© Copyright by Heise Medien
Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

JavaScript-Framework Vue.js | Know-how

c’t 2018, Heft 19 181

const game = new Vue({

data: {...},

computed: {

done: function() {

return this.html5.length

}

},

methods: {...}

})

Anders als data erwartet computed den
Rückgabewert einer Funktion. Mit jeder
Änderung an game.html5 aktualisiert Vue
game.done.

Zusätzlich soll das Spiel die bereits ge-
fundenen Elemente auflisten. Die mini-
malistische Lösung wäre, die Array-Varia-
blen html5, experimental und deprecated in
doppelte geschweifte Klammern zu ver-
packen und einfach ins Template zu
schreiben. Das klappt tatsächlich, sieht
aber nicht schön aus: ["a", "b", "br"] …

Besser gelingt es mit dem Vue-Attri-
but v-for, das über ein Array oder Objekt
iteriert:

{{el}}

Vue holt jedes Element el aus dem Array
game.html5, setzt dafür ein neues ein
und schreibt das Element als Textinhalt
hinein. Beim Iterieren von Arrays kann
v-for auch die Indexnummer extrahieren
(v-for="(el, i) in html5"), bei Objekten
auf die gleiche Weise den Schlüssel.

Nun aktualisiert Vue bei jedem neu
gefundenen Element die Liste. Eine schö-
nere Darstellung mit Leerzeichen und
Kommata bewerkstelligt am einfachsten
ein kleiner CSS-Kniff, der im Projekt-
 Stylesheet enthalten ist:

span + span::before {

content: ', ';

}

UI-Bibliotheken wie Vue.js tricksen viel
beim Rendern, denn DOM-Zugriffe sind
zeitaufwendig. Bei Änderungen hängt die
Reaktionsschnelligkeit der Oberfläche
maßgeblich von der Wiederverwertbar-
keit bereits gerenderter Komponenten ab.
Wenn Sie Vue dabei über die Schulter
schauen wollen, setzen Sie testweise ein
<input> in den :

{{el}}

<input>

Geben Sie nun zuerst einen Element -
namen ein, der weit hinten im Alphabet
steht, zum Beispiel „wbr“. Der Zähler

springt auf 1, das Element erscheint in der
Ausgabeliste, gefolgt von einem Eingabe-
feld. Tippen Sie dort etwas hinein und
schreiben Sie einen weiteren Elementna-
men (zum Beispiel „div“) ins Spielfeld.
Wie erwartet, sortiert das Spiel „div“ vor
„wbr“ – aber das <input>-Feld mit Ihrer
Eingabe ist nicht mitgewandert und steht
jetzt neben „div“. Statt alles neu zu ren-
dern, hat Vue nämlich nur Inhalte ausge-
tauscht und ans Ende der Liste ein neues
Element angehängt.

In manchen Szenarien kann dieses
Verhalten zu merkwürdigen Bugs führen.
Daher gilt es als gute Praxis, Listenele-
mente mit einem key-Attribut individuell
zu markieren (React macht es übrigens
ähnlich und setzt bei Nichtbeachtung
sogar Warnungen auf der Konsole ab).
Das key-Attribut sorgt dafür, dass Vue Ele-
mente wiedererkennt und umsortieren
kann – was außerdem schneller sein soll
als das Default-Verhalten:

<span v-for="el in html5"

:key="'output-' + el">{{el}}

Als Schlüsselwert eignet sich hier der
Array-Wert selbst am besten, der ja ein-
deutig ist. Um Verwechslungen zu vermei-
den – am Ende des Spiels wird es noch
eine Report-Ausgabe geben –, fügen Sie
einen String wie output- in den Key ein;
String-Konkatenation ist im Template kein
Problem. Wenn Sie den Test mit dem
<input>-Feld wiederholen, werden Sie
feststellen, dass Vue die Elemente nun tat-
sächlich umsortiert. Sonst hinterlassen
die key-Attribute keine Spur im Markup.

Eingekleidet in <output>-Elemente
sieht das Markup so aus:

<output class="green"

v-if="html5.length > 0">

HTML5: <span v-for="el in html5"

:key="'output-' + el">{{el}}

</output>

<output class="blue"

v-if="experimental.length > 0">

Experimentell: <span v-for="el in

experimental" :key="'output-' +

el">{{el}}

</output>

<output class="red"

v-if="deprecated.length > 0">

Veraltet: <span v-for="el in

deprecated" :key="'output-' +

el">{{el}}

</output>

Die v-if-Attribute sind nicht schwer zu
verstehen: Die Blöcke erscheinen erst,

wenn das betreffende Array Elemente ent-
hält.

Timer und Status
Beim HTML-Elemente-Spiel tickt die
Uhr: Mit der ersten Eingabe beginnt der
Countdown zu laufen, bis er bei Null an-
gekommen ist oder der Nutzer alle
HTML-Elemente gefunden hat. Legen Sie
dazu zwei neue Vue-Variablen fest:

data: {

/*...*/

state: 'off',

time: 360

}

Läuft das Spiel, steht game.state auf 'on',
ist es vorbei, auf 'over'. game.time erfasst
die noch verfügbare Zeit in Sekunden; zu
Beginn sind es also sechs Minuten. Wäh-
rend des Testens kann es helfen, vorüber-
gehend einen niedrigen Wert einzusetzen.
Eine timer()-Funktion (siehe Projekt-
Code unter dem c’t-Link) zählt die Varia-
ble time bis auf 0 herunter, dann setzt sie
den state auf over.

Erst einmal müssen Sie sie aber star-
ten. Dazu brauchen Sie eine Anweisung in
handleInput(). Bei dieser Gelegenheit er-
gänzen Sie gleich den Statuswechsel zu
'over', falls der Nutzer sämtliche Elemen-
te gefunden hat:

Das vollständige Spiel gibt einen
ausführlichen Report aus und ermittelt
einen Score. Für veraltete Elemente
gibts Strafpunkte, für experimentelle
einen Bonus.

ct.1918.178-183.neu1.qxp 24.08.18 11:39 Seite 181

© Copyright by Heise Medien
Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

Know-how | JavaScript-Framework Vue.js

c’t 2018, Heft 19182

handleInput: function() {

if (this.state === 'off')

this.state = 'on';

/*...*/

if (this.done === this.todo)

this.state = 'over';

}

Sie könnten auch gleich die jeweiligen
Funktionen in die if-Blöcke setzen, aber
klarer ist es, den Anwendungs-state zu
überwachen. Dafür gibt es die watch-Op-
tion, die auf der gleichen Ebene wie data,
methods und computed steht:

const game = new Vue({

/*...*/

watch: {

state: function(newState) {

if (newState === 'on')

this.timer();

else if (newState === 'over')

console.log('Auswertung ...');

}

}

})

Der Watcher übergibt einer Funktion als
Argumente den neuen Wert der gleichna-
migen Variable. Damit lässt er sich als
App-Controller einsetzen, der den Timer
oder bei Spielende die Auswertung startet.
Nun legt der Timer mit der ersten Eingabe
los. Damit der Spieler auch seine Rest-
spielzeit sehen kann, braucht das Template
ein kleines Update:

<div id="timer" :class="state">

{{minutes}}:{{seconds}}</div>

Die minutes und seconds berechnen Sie auf
Grundlage von game.time:

computed: {

/*...*/

minutes: function() {

return Math.floor(this.time / 60);

},

seconds: function() {

const _seconds = this.time % 60

return _seconds < 10 ? '0' +

_seconds : _seconds;

},

inputDisabled: function() {

return this.state !== 'off' &&

this.state !== 'on';

}

}

Ein paar simple Rechenoperationen extra-
hieren Minuten- und Sekundenwerte, die
Vue.js ins Template einfügt und laufend
aktualisiert. Bei dieser Gelegenheit kön-
nen Sie endlich etwas Sinnvolles mit in-
putDisabled anstellen (nachdem Sie es aus
data entfernt haben): Abhängig vom App-
state aktiviert und deaktiviert sich das
Eingabefeld nun automatisch.

Template-Tricks
Um die React-Version funktional ein klein
wenig zu übertreffen, soll die Vue-Version
noch einen Pausen- und einen Aufgeben-
Button erhalten. Mit der aufeinander auf-
bauenden Variablen-Aktualisierung und
den Template-Fähigkeiten von Vue.js ist
das schnell umgesetzt:

<button v-if="state === 'over'"

@click.prevent="restart">

Neu starten</button>

<button v-else @click.prevent="pause"

:disabled="pauseDisabled">

{{state === 'paused'? 'Fortsetzen'

: 'Pause'}}</button>

<button @click.prevent=

"state = 'over'"

:disabled="state !== 'on'">

Aufgeben</button>

v-if kennen Sie bereits; unmittelbar da-
nach kann v-else-if oder v-else folgen. In
diesem Fall führt das dazu, dass entweder
der Neustart- oder der Pause-Button im
DOM auftauchen.

Die drei @click-Eigenschaften haben
jeweils einen .prevent-Zusatz. Dieser ruft
die Standardmethode event.preventDe-
fault() auf und verhindert so, dass die an-
geklickten Buttons eine neue URL öffnen.

Einfache Operationen lassen sich
auch direkt im Template ausführen – etwa
die Beschriftung des Pause-Buttons oder
die mit dem Aufgeben-Button verbunde-
ne Anweisung. Letztere funktioniert, weil
sich der mit der state-Variable verbunde-
ne Watcher um die Details kümmert. Der
Aufgeben-Button lässt sich anklicken,
wenn state den Wert 'on' hat. Auch der
pauseDisabled-Status ließe sich direkt im
Template festlegen, aber das wäre etwas
sperriger:

computed: {

pauseDisabled: function() {

return this.state !== 'on' &&

this.state !== 'paused';

},

/*...*/

}

Die Pausenfunktion wechselt einfach nur
zwischen zwei Anwendungszuständen;
restart() setzt alle relevanten Variablen
zurück:

methods: {

/*...*/,

pause: function() {

this.state =

(this.state === 'paused')?

'on' : 'paused';

},

restart: function() {

this.inputValue = '';

this.state = 'off';

this.time = 360;

this.html5 = [];

this.deprecated = [];

this.experimental = [];

this.results = [];

}

}

Lebenszyklus
Ähnlich wie seine Konkurrenten verfügt
auch Vue über Hooks, die zu bestimmten

Mit den Vue-Entwickler-Tools kann man sich live zum Beispiel Variablenbelegungen
ansehen – und mit der Konsole schummeln.

ct.1918.178-183.neu1.qxp 24.08.18 11:39 Seite 182

© Copyright by Heise Medien
Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

JavaScript-Framework Vue.js | Know-how

c’t 2018, Heft 19 183

Zeiten im App-Lebenszyklus anspringen
und mit denen Sie Funktionen auslösen
können.

So stört es ein wenig, dass die App
nach dem Aufruf einen Augenblick lang
im Browser zu sehen ist, bevor Vue sie
wieder verbirgt. Die Lösung: Setzen Sie
einfach im CSS den App-Selektor main auf
display: none und korrigieren Sie dies,
wenn das Spiel bereit ist:

const game = new Vue({

mounted: function() {

this.$el.style.display = 'block';

},

/*...*/

})

this.$el ist eine Spezialvariable, die sich auf
das App-Element bezieht. Noch vor mounted
löst created aus, wo Sie erstmals auf App-
Variablen zugreifen können. Weitere Hooks
sind updated, destroyed sowie die jeweilige
before-Variante, zum Beispiel beforeMount.

Komponenten
Bei wiederverwendbaren Komponenten
setzt Vue.js auf HTML-Custom-Elemente,
eine Webtechnik, deren Spezifizierung
seit Längerem in Arbeit ist [2]. Custom-
Elemente erkennen Sie am Bindestrich im
Namen.

Ein einfacher Anwendungsfall ist der
Ersatz für die drei <output>-Elemente, die
während des Spiels den Zwischenstand
anzeigen:

<found-elements v-if="html5.length"

:list="html5" color="green">

HTML5-Elemente</found-elements>

<found-elements v-if="experimental.:

.length" :list="experimental"

color="blue">

Experimentell</found-elements>

<found-elements

v-if="deprecated.length"

:list="deprecated" color="red">

Veraltet </found-elements>

Die Elemente übergeben alle notwendigen
Werte: die Liste (list), die Farbe (color)
und die Beschriftung als Textinhalt. Die
dazugehörige Komponente sieht so aus:

const game = new Vue({

components: {

'found-elements': {

props: ['color', 'list'],

template: `<output :class="color">

<slot></slot>:

<span v-for="item in list"

:key="'output-' + item">

{{item}}

</output>`

}

},

/*...*/

})

components ist eine weitere App-Eigen-
schaft. Dem Elementnamen als Schlüssel
sind die Details der Komponente zugewie-
sen. Die übergebenen Eigenschaften color
und list müssen Sie noch mal als props
auflisten. Das Template verwendet Back-
ticks statt Anführungszeichen, was mehr-
zeilige Strings und Variablen-Interpolie-
rung erlaubt.
Auf den Textinhalt von <found-elements>
greifen Sie mittels <slot> zu – auch das ist
keine Erfindung der Vue-Macher, son-
dern in den jüngsten HTML-Entwürfen
für Custom-Elemente bereits so vorgese-
hen.In der Praxis setzen Webagenturen
Komponenten meist anders ein: als global
verfügbare, wiederverwendbare Baustei-
ne, die eigene Methoden und sogar Stile
mitbringen. Für die globale Registrierung
sorgt Vue.component().
Jede Komponente ist typischerweise in
einer eigenen Datei mit der Endung .vue
untergebracht, wobei der Modul-Bundler
Webpack für den Import sorgt. So einen
Workflow können Sie sehr einfach über
das von Vue.js bereitgestellte Komman-
dozeilenwerkzeug einrichten (siehe
ct.de/yhet).

Vue-Ausblick
Vue kann noch mehr: Es unterstützt ani-
mierte Übergänge und erlaubt serverseiti-
ge Programmierung. Angular-Fans können
Vue-Anwendungen in TypeScript program-
mieren, React-Liebhaber dürfen die Tem-
plate-Sprache JSX weiterverwenden. Es
gibt Tools fürs Routing, für State-Manage-
ment im Stil von Flux sowie Browser-Er-
weiterungen zum Debuggen und das er-
wähnte Kommandozeilenwerkzeug. Ver-
mutlich ist es mit React- und Angular-
Know-how immer noch einfacher, einen
Job zu finden, aber sonst spricht viel für das
jüngste der drei großen Frameworks. Einen
Vorsprung haben die beiden Platzhirsche
allerdings noch bei der plattformübergrei-
fenden Entwicklung dank Frameworks wie
Ionic, NativeScript oder React Native.

„Die Technik entwickelt sich vom Pri-
mitiven über das Komplizierte zum Ein-
fachen“, soll angeblich Antoine de Saint-
Exupéry einmal gesagt haben. Mit Angu-
lar und React schaffte demnach die Front -
end-Entwicklung den Sprung in die
komplizierte Phase – aber einfach wird es
erst mit Vue.js. (jo@ct.de) c

Literatur

[1]ˇHerbert Braun, Webseiten-Reaktor, Facebooks
JavaScript-Bibliothek React für datenlastige
Websites, c’t 2/2016, S. 162

[2]ˇHerbert Braun, HTML maßgeschneidert,
Eigene Elemente und Templates definieren,
c’t 26/2013, S. 182

Projekt-Download: ct.de/yhet

Vue.js überzeugt auch mit seiner guten Dokumentation sowie der sehr regen
und hilfreichen Community.

ct.1918.178-183.neu1.qxp 24.08.18 11:39 Seite 183

© Copyright by Heise Medien
Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

