Hiding In PlainSight - Proxying DLL Loads To Hide From ETWTI Stack Tracing

1of7

Hiding In PlainSight - Proxying DLL Loads To
Hide From ETWTI Stack Tracing

Posted on 26 Jan 2023 by Paranoid Ninja

NOTE: This is a PART | blog on Stack Tracing evasion. PART Il can be found here.

Been a while since | actually wrote any blog on Dark Vortex [not counting the Brute Ratel ones, just raw research],
thus | decided to add the post here. This blog provides a high level overview on stack tracing, how EDR/AVs use it for
detections, the usage of ETWTI telemetry and what can be done to evade it. Last year, | posted a blog on Brute Ratel
which was the first Command & Control to provide built-in proxying of DLL loads to avoid detections, which was later
on adopted by other C2s like nighthawk with a different set of APIs [Rt1QueueWorkItem] to avoid detections. Thus,

before we discuss evasion, lets first understand why stack tracing is important for EDRs.

What Is A Stack?

The simplest way to describe a ‘Stack’ in computer science, is a temporary memory space where local variables and
function arguments are stored with non-executable permissions. This stack can contain several information about a
thread and the function in which it is being executed. Whenever your process executes a new thread, a new stack is
created. Stack grows from bottom to top and works in linear fashion, which means it follows the Last In, First Out
principal. The ‘RSP’ [x64] or ‘ESP’' [x86] stores the current stack pointer of the thread. Each new default stack size
for a thread in windows is of 1 Megabyte unless explicitly changed by the developer during the creation of the
thread. This means, if the developer does not calculate and increase the stack size while coding, the stack might end
up hitting the stack boundary [alternative known as stack canary] and raise an exception. Usually, it is the task of
the _chkstk routine within msvcrt.dll to probe the stack, and raise an exception if more stack is required. Thus if you
write a position independent shellcode which requires a large stack (as everything in PIC is stored on stack], your
shellcode will crash raising an exception since your PIC will not be linked to the _chkstk routine within msvert.dlLL.
When your thread starts, your thread might contain execution of several functions and usage of various different
types of variables. Unlike heap, which needs to be allocated and freed manually, we dont have to manually calculate
the stack. When the compiler [mingw gcc or clang] compiles the C/C++ code, it auto calculates the stack required
and adds the required instruction in the code. Thus when your thread is run, it will first allocate the ‘x’ size on stack

from the reserved stack of 1 MB. Take the below example for this instance:

ivoid samplefunction() {
char test[8192];

In the above function, we are simply creating a variable of 8192 bytes, but this will not be stored within the PE as it
will unnecessarily end up eating space on disk. Thus such variables are optimized by compilers and converted to

instructions such as:

The above assembly code subtracts O0x2000 bytes [8192 decimal] from stack which will be utilized by the function
during runtime. In short, if your code needs to clean up some stack space, it will add bytes to stack, whereas if it
requires some stack space, it will subtract from the stack. Each function's stack within the thread will be converted
to a block which is called as stack frame. Stack frames provide a clear and concise view of which function was last
called, from which area in memory, how much stack is being used by that frame, what are the variables stored in the
frame and where the current function needs to return to. Everytime your function calls another function, your

current function's address is pushed to stack, so that when the next function calls ‘ret’ or return, it returns to the

https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/

21.05.23, 20:41

https://0xdarkvortex.dev/hiding-in-plainsight/
https://0xdarkvortex.dev/hiding-in-plainsight/
https://bruteratel.com/release/2022/07/20/Release-Stoffels-Escape/
https://bruteratel.com/release/2022/07/20/Release-Stoffels-Escape/
https://learn.microsoft.com/en-us/cpp/build/reference/stack-stack-allocations?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/stack-stack-allocations?view=msvc-170

Hiding In PlainSight - Proxying DLL Loads To Hide From ETWTI Stack Tracing https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/

current function's address to continue execution. Once your current function returns to the previous function, the
stack frame of the current function gets destroyed, not completely though, it can still be accessed, but mostly ends
up being overwritten by the next function which gets called. To explain it like | would to a 5 year old, it would go like
this:

void func3() {

char test[2048];

// do something
return;

%void func2() {
‘ char test[4096];
func3();

%void func1() {
char test[8192];
func2();

sub rsp, 0x800
; do something
add rsp, 0x800

; ret

ifunCZ:

| sub rsp, 0x1000
call func3
add rsp, 0x1000

; ret

%func1:

: sub rsp, 0x2000
call func2
add rsp, 0x2000
ret

Well, a 5 year old wont understand it, but when do you find a 5 year old writing a malware right? XD! Thus, each
stack frame will contain the number of bytes to allocate for variables, return address which pushed to stack by the

previous function and information about current function’s local variables [in a nut shell].

Wheres THE ‘O’ in EOR here?

The technique for detection is extremely smart here. Some EDRs use userland hooks, whereas some use ETW to
capture the stack telemetry. For example, say you want to execute your shellcode without module stomping. So, you
allocate some memory via VirtualAlloc or the relative NTAPI NtAllocateVirtualMemory, then copy your shellcode and
execute it. Now your shellcode might have its own dependencies and it might call LoadLibraryA or LdrLoadD11 to
load a dlL from disk into memory. If your EDR uses userland hooks, they might have already hooked LoadLibrary and
LdrLoadDll, in which case they can check the return address pushed to stack by your RX shellcode region. This is
specific to some EDRs like Sentinel One, Crowdstrike etc. which will instantly kill your payload. Other EDRs like
Microsoft Defender ATP [MDATP], Elastic, FortiEDR will use ETW or kernel callbacks to check where the LoadLibrary
call originated from. The stack trace will provide a complete stack frame of return address and all the functions from
where the call to LoadLibrary started. In short, if you execute a DLL Sideload which executes your shellcode which

called LoadLibrary, it would look like this:

2 of 7 21.05.23, 20:41

Hiding In PlainSight - Proxying DLL Loads To Hide From ETWTI Stack Tracing

| <- Detection (An unbacked RX region should never call

§| Return address of RtlUserThreadStart |
i |
| Bottom Of The Stack

This means any EDR which hooks LoadLibrary in usermode or via kernel callbacks/ETW, can check the last return

address region or where the call came from. In the v1.1 release of BRc4, | started using the Rt1RegisterWait API
which can request a worker thread in thread pool to execute LoadLibraryA in a seperate thread to load the library.
Once the library is loaded, we can extract its base address by simply walking the PEB [Process Environment Block].
Nighthawk later adopted this technique to Rt1QueueWorkItem APl which is the main NTAPI behind QueueUserWorkItem
which can also queue a request to a worker thread to load a library with a clean stack. However this was researched
by Proofpoint sometime last year in their blog, and lately Joe Desimone from Elastic also posted a tweet about the
RtlRegisterWait APl being used by BRc4. This meant sooner or later, detections would come around it and there
were need of more such APIs which can be used for further evasion. Thus | decided to spend some time reversing
some undocumented APIs from ntdll and found atleast 27 different callbacks which, with a little tweaking and

hacking can be exploited to load our DLL with a clean stack.

Windows Callbacks: Allow Us To Introduce Ourselves
Callback functions are pointers to a function which can be passed on to other functions to be executed inside them.
Microsoft provides an insane amount of callbacks for software developers to execute code via other functions. A lot

of these functions can be found in this github repository which have been exploited quite widely since the past two

years. However there is a major issue with all those callbacks. When you execute a callback, you dont want the
callback to be in the same thread as of your caller thread. Which means, you dont want stack trace to follow a trail
like: LoadLibrary returns to -> Callback Function returns to -> RX region. In order to have a clean stack, we
need to make sure our LoadLlibrary executes in a seperate thread independent of our RX region, and if we use
callbacks, we need the callbacks to be able to pass proper parameters to LoadLibraryA. Most callbacks in Windows,
either dont have parameters, or dont forward the parameters ‘as is’ to our target function ‘LoadLibrary’. Take an

example of the below code:

%#include <windows.h>
i #include <stdio.h>

%int main() {
| CHAR *1ibName = "wininet.d11";

PTP_WORK WorkReturn = NULL;
‘ TpAllocWork(&WorkReturn, LoadLibraryA, libName, NULL); // pass ‘LoadlLibraryA® as a callback to
i TpAllocWork

: TpPostWork(WorkReturn); // request Allocated Worker Thread
| Execution
TpReleaseWork(WorkReturn); // worker thread cleanup

WaitForSingleObject ((HANDLE)-1, 1000);
printf("hWininet: %p\n", GetModuleHandleA(libName)); //check if library is loaded

return 0;

If you compile and run the above code, it will crash. The reason being the definition of TpAllocWork is:

https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/

21.05.23, 20:41

https://bruteratel.com/release/2022/07/20/Release-Stoffels-Escape/
https://bruteratel.com/release/2022/07/20/Release-Stoffels-Escape/
https://github.com/aahmad097/AlternativeShellcodeExec
https://github.com/aahmad097/AlternativeShellcodeExec

Hiding In PlainSight - Proxying DLL Loads To Hide From ETWTI Stack Tracing

4 of 7

NTSTATUS NTAPI TpAllocWork(
PTP_WORK* ptpWrk,
PTP_WORK_CALLBACK pfnwkCallback,
PVOID OptionalArg,
PTP_CALLBACK_ENVIRON CallbackEnvironment

VOID CALLBACK WorkCallback(
PTP_CALLBACK_INSTANCE Instance,
PVOID Context,

PTP_WORK Work

As can be seen in the above figure, our PVOID OptionalArg from TpAllocWork APl gets forwarded as secondary
argument to our Callback [PVOID Context]. So if our hypothesis is correct, the argument 1ibName (wininet.dll) that
we passed to TpAllocWork will end up as a second argument to our LoadLibraryA. But LoadLibraryA DOES NOT have

a second argument. Checking this in debugger leads to the following image:

B Guw - oyt ([clisok | ot | o] s @) syt | O soue | 5 mownas | W Tl s) Tt
5 T & Hide FPU
c incs
cc int3 RA’ 00007FF905530CBO <kernel32.LoadLibraryA>
e 5 48:FE251C1180800) np, qWordIpErdss[<&LoadLibraryad] | REX 00000000006F6390 - 11y
o 7 o« it RCX__ 0000000000BEFDAS
c int3 RDX__0000000000404000 Wininet.d
o inc3 RBP 00000000006F6458 <&TppworkpTaskvFuncss
o o« sy RSP 0000000000BEFBDS)
ol & int3 RSI 00000000006F65B0 <&LoadLibraryA>
N & = RDI 000000007FFE0386
Qs = s RS 00000000006F6390
S (G0 Esnesaee) = i RO 0000000000000020 0
elooo7ersoss3oces & i3 “| 10 0000000000404000 "wininet.d11"

So this indeed created a clean stack like: LoadLibraryA returns to -> TpPostWork returns to ->
RtlUserThreadStart, but our argument for LoadLibrary gets sent as the second argument, whereas the first
argument is a pointer to a TP_CALLBACK_INSTANCE structure sent by the TpPostWork API. After a bit more reversing, |
found that this structure is dynamically generated by the TppWorkPost [NOT TpPostWork], which as expected is an
internal function of ntdll.dll and nothing much can be done without having the debug symbols for this API.

48:83EC 28 sub rsp,28 TpPostwWork
00007FF9070C28C4 B mov r9,rcx
00007FF9070C28C7 test rex,rex
00007FF9070C28CA je ntd11.7FF9070C2902
00007FF9070C28CC xor _edx, edx
00007FF9070C28CE call <ntd11.TppvalidateCleanupGrou
00007FF9070C28D3 test eax,eax
00007FF9070C28D5 4 2B je ntd11.7FF9070C2902
00007FF9070C28D7 H Tea rax,qword ptrds: [<TppWorkpCleal
00007FF9070C28DE H cmp gword ptrds:[r9+8],rax [r9+8] : Tppwc
00007FF9070C28E2 75 1E jne ntd11.7FF9070C2902
00007FF9070C28E4 E mov rax,qword ptr!:[eoj
00007FF9070C28ED 48:8848 18 mov rcx,qword ptrds: [rax-18]
00007FF9070C28F1 3 cmp byte ptrds:[rcx-48],d1
00007FF9070C28F4 jne ntd11.7FF9070C2902

0007FF9070C28F6 H mgx rex,r9
ZEES0Z g

| v[E9 BG000000 | Smp <ncd11. TopworkPost> |
| |

V| E9 31FDOF00 ‘ jmp <n;:ﬂ1.TppRaiseInva'I'idParamete
However, all hope is not yet lost. One of the dirty tricks we can try is to replace a Callback function from

[rax+18]:Pet

——+ ||00007FF9070c2906

LoadLibrary to a custom function in TpAllocWork which then calls LoadLibraryA via our callback. Something like this:

https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/

21.05.23, 20:41

https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms687396(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms687396(v=vs.85)
https://0xdarkvortex.dev/assets/images/2023-01-26-Proxying-DLL-Loads/LLB1.png
https://0xdarkvortex.dev/assets/images/2023-01-26-Proxying-DLL-Loads/LLB1.png
https://0xdarkvortex.dev/assets/images/2023-01-26-Proxying-DLL-Loads/tpp.png
https://0xdarkvortex.dev/assets/images/2023-01-26-Proxying-DLL-Loads/tpp.png

Hiding In PlainSight - Proxying DLL Loads To Hide From ETWTI Stack Tracing https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/

i #include <windows.h>
i #include <stdio.h>

%VOID CALLBACK WorkCallback(

Inout PTP_CALLBACK_INSTANCE Instance,

_Inout_opt_ PVOID Context,
¢ _Inout_ PTP_WORK Work
A

LoadLibraryA(Context);

iint main() {
i CHAR *1ibName = "wininet.dll";

PTP_WORK WorkReturn = NULL;
; TpAllocWork(&WorkReturn, WorkerCallback, libName, NULL); // pass “LoadlLibraryA" as a callback to
i TpAllocWork

i TpPostWork(WorkReturn); // request Allocated Worker Thread
{ Execution
TpReleaseWork(WorkReturn); // worker thread cleanup

WaitForSingleObject ((HANDLE)-1, 1000);
printf("hWininet: %p\n", GetModuleHandleA(libName)); //check if library is loaded

return 0;

However this means, the callback will be in our RX region and the stack would become: LoadLibraryA returns to ->
Callback in RX Region returns to -> RtlUserThreadStart -> TpPostWork which is not good as we ended up doing
the same thing we were trying to avoid. The reason for this is stack frame. Because when we call LoadLibraryA from
our Callback in RX Region, we end up pushing the return address of the Callback in RX Region on stack which
ends up becoming a part of the stack frame. However, what if we manipulate the stack to NOT PUSH THE RETURN
ADDRESS? Sure, we will have to write a few lines in assembly, but this should solve our issue entirely and we can

have a direct call from TpPostWork to LoadLibrary without having the intricacies in between.

The Final Trick

5o0f7 21.05.23, 20:41

Hiding In PlainSight - Proxying DLL Loads To Hide From ETWTI Stack Tracing https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/

i#include <windows.h>
i #include <stdio.h>

itypedef NTSTATUS (NTAPI* TPALLOCWORK)(PTP_WORK* ptpWrk, PTP_WORK_CALLBACK pfnwkCallback, PVOID
§0ptionalArg, PTP_CALLBACK_ENVIRON CallbackEnvironment);

itypedef VOID (NTAPI* TPPOSTWORK)(PTP_WORK);

ﬁtypedef VOID (NTAPI* TPRELEASEWORK)(PTP_WORK)

| FARPROC plLoadLibraryA;

%UINT_PTR getLoadLibraryA() {
‘ return (UINT_PTR)pLoadLibraryA;

%extern VOID CALLBACK WorkCallback(PTP_CALLBACK_INSTANCE Instance, PVOID Context, PTP_WORK Work);

%int main() {

‘ pLoadLibraryA = GetProcAddress(GetModuleHandleA("kernel32"), "LoadLibraryA");
FARPROC pTpAllocWork = GetProcAddress(GetModuleHandleA("ntdl1l"), "TpAllocWork");
FARPROC pTpPostWork = GetProcAddress(GetModuleHandleA("ntdl1l"), "TpPostWork");
FARPROC pTpReleaseWork = GetProcAddress(GetModuleHandleA("ntdl1l"), "TpReleaseWork");

CHAR *1libName = "wininet.dll";

PTP_WORK WorkReturn = NULL;

((TPALLOCWORK)pTpAllocWork) (&orkReturn, (PTP_WORK_CALLBACK)WorkCallback, libName, NULL);
((TPPOSTWORK)pTpPostWork) (WorkReturn);

((TPRELEASEWORK)pTpReleaseWork) (WorkReturn);

WaitForSingleObject ((HANDLE)-1, 0x1000);
printf("hWininet: %p\n", GetModuleHandleA(libName));

return 0;

i section .text

%extern getLoadLibraryA
iglobal WorkCallback

| WorkCallback:

3 mov rcx, rdx
xor rdx, rdx
call getLoadLibraryA
jmp rax

Now if you compile both of them together, our TpPostWork calls WorkCallback, but WorkCallback does not call
LoadLibraryA, it instead jumps to its pointer. WorkCallback simply moves the library name in the RDX register to RCX,
erases RDX, gets the address of LoadLibraryA from an adhoc function and then jumps to LoadLibraryA which ends up

rearranging the whole stack frame without adding our return address. This ends up making the stack frame look Llike

o n S smos O Soure Retwecss W Theses i vandes ¢ e

e A 48:FF25 C1180600] jmp qword ptr ds:[<&LoadLibraryas] »
® 00007FF905530CB7 cc int3 HIGeNRRY
 00007FF905530cES cc int3 RAX 00007FF905530CB0 <kernel32.LoadLibraryA>
® 00007FF905530CE9 c int3
2 % B ooLexe 7356 Proge E— RCX__000000000040404: "wininet.d11"]
| RDX
2 08 Genere statiscs Peromance Trreads Token Modules Memary Envrcnment Handes GPU _ Comment RBP 0000000000006458 <&TppworkpTaskvFuncs>
oo RSP 0000000000C6FBD:
ol d T CPU Cyces o Star aderass RST
. 00 5028 456,034 il il ToReleaseClaanupGroupMembers 05450 RDI 000000007FFE038
.o
® 00 ;g .
ooy 1 Stack - threac i g "
o o0 e 20 x ~| r10 1 wininet.d11

< > | R1L FFE
quord ptr ds: [00007FFS Name. R12 7FFEO3BO
Kamei32 dilLsadibrry R13 Lo
oooo7sesossocan i ToAlcPool 401260

il ToRelesseCieanupGrouphlembers-Oteda
Kemel2,dilBaseThreadiniThunk £0x14
e iRiUse Threadstart- 021

00000C6FE]

0000730
00007FF90708148 8¢ < |
oo007cro0ronioe 5 pE—

OO007TEESToRI o8 3 sanaa: [T
e
00007Era07ons OF 8¢ S Ve return to ntdl1. TppWorkerThread+68a from 272

00007FF30708] c6 4¢ Kernel 00:00:00.1¢
0007FF907081 42 CE Usar time: 00:00:00.1

00000C6F
Jnonnnca=c+ anonooonnooanano

6 of 7 21.05.23, 20:41

https://0xdarkvortex.dev/assets/images/2023-01-26-Proxying-DLL-Loads/cleanSlate.png
https://0xdarkvortex.dev/assets/images/2023-01-26-Proxying-DLL-Loads/cleanSlate.png

Hiding In PlainSight - Proxying DLL Loads To Hide From ETWTI Stack Tracing https://0xdarkvortex.dev/proxying-dll-loads-for-hiding-etwti-stack-tracing/

7 of 7

The stack is clear as crystal with no signs of anything malevolent. After finding this technique, | started hunting
similar other APIs which can be manipulated, and found that with just a little bit of similar tweaks, you can actually
implement proxy DLL loads with 27 other Callbacks residing in kernel32, kernelbase and ntdll. | will leave it out as
an exercise for the readers of this blog to figure that out. For the users of Brute Ratel, you will find these updates in

the next release v1.5. That would be all for this blog and the full code can be found in my github repositary.

Tagged with: red-team blogs

Copyright © 2021 Dark Vortex

21.05.23, 20:41

https://github.com/paranoidninja/Proxy-DLL-Loads
https://github.com/paranoidninja/Proxy-DLL-Loads
https://0xdarkvortex.dev/tags/red-team/
https://0xdarkvortex.dev/tags/red-team/
https://0xdarkvortex.dev/tags/blogs/
https://0xdarkvortex.dev/tags/blogs/

