
Kurz zusammengefasst: Wir veröffent-
lichen das Notfall-Windows alljähr-

lich als Bausatz, weil Microsoft das als
Basis genutzte Minimal-Windows „Win-

dows PE“ (Preinstallation Environment)
zwar öffentlich zum Download bereit-
stellt, aber keine Lizenzen dafür ausgibt,
die uns das Weiterverbreiten erlauben
würden. Der Bausatz arbeitet dazu Skripte
ab, die in einer Sprache verfasst sind, die
das Programm WinBuilder einst einge-
führt hat.

Die Basis unse-
res Notfallsystems
bildet ein Projekt
auf Grundlage von
Windows PE. Das
haben wir nicht
selbst erfunden.
Dritte haben es schon länger entwickelt.
Seit vergangenem Jahr nutzen wir als Basis
PhoenixPE. Das im Folgenden Erklärte gilt
ebenso dafür. Das Ziel aller PE-Projekte
ist, das im Funktionsumfang begrenzte

Preinstallation Environment (PE) soweit
aufzupeppeln, dass es reguläre Windows-
Programme ausführt.

Ein typischer, offizieller Vertreter eines
solchen PE-Systems ist die Umgebung, die
von einem Windows-Installationsdatenträ-
ger startet, um das Betriebssystem startfähig
auf die Festplatte eines PCs zu überspielen

– daher kommt auch
der Name „Preins-
tallation Environ-
ment“. Im „Windows
Assessment and De-
ployment Kit“ (ADK)
liefert Microsoft

Werkzeuge, um diesen Prozess zu beeinflus-
sen; frühe PE-Projekte griffen darauf zurück,
heute geht es nahezu ohne.

Auf einem „Wiederherstellungslauf-
werk“, das Sie sich unter Windows vom

Von Peter Siering

Folgen Sie uns hinter die Kulis-
sen des Bausatzes unseres Not-
fallsystems, den wir Anfang des
Jahres vorgestellt haben. Wir
zeigen, wie er tickt, und liefern
darauf aufbauend Beispiele, wie
Sie den Bausatz selbst erweitern
können – Werkzeug hat man
schließlich nie genug.

c’t-Notfall-Windows 2024: Tipps und Tricks zum Erweitern

Werkzeugmacher

Bi
ld

: M
or

itz
 R

ei
ch

ar
tz

c’t 2024, Heft 8154

Template-Version: 114-CC2021

© Copyright by Heise Medien.

Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

gleichnamigen Assistenten erstellen las-
sen können, findet sich ebenfalls eine PE-
Variante. Der Windows-eigene Assistent
beschreibt einen USB-Stick, von dem dann
eine modifizierte PE-Umgebung startet.
Die enthält aber vergleichsweise wenig
Programme. Das einzig interaktive Ele-
ment, um mal auf Dateien zu schauen, ist
die Eingabeaufforderung.

Microsofts eigene PE-Umgebung
geizt bei den enthaltenen Programmen,
oft steht gerade mal eine Eingabeauffor-
derung zur Verfügung. Zudem fehlen viele
Bibliotheken, deshalb läuft selbst so man-
che portable Software nicht, die ohne In-
stallation auskäme. Und: In der 64-Bit-
Umgebung stecken auch keine Funktio-
nen, um 32-Bit-Programme auszuführen.

PE aufbrezeln
Die Kunst aller PE-Projekte besteht darin,
das in der Datei Boot.wim steckende Mi-
nimal-Windows so weit aufzubrezeln, dass
es weitere Programme ausführen lernt.
Das erreichen die Projekte, indem sie das
Basissystem um Registry-Schlüssel anrei-
chern, die Software üblicherweise erwar-
tet, nötige Bibliotheken hinzufügen und
sogar das Subsystem ergänzen, um in einer
64-Bit-Umgebung, auch 32-Bit-Program-
me auszuführen (WOW64 [1]).

Dazu picken die Projekte in PE fehlen-
de Dateien aus der install.wim-Datei einer
Original-Windows-DVD heraus und pflan-
zen sie der Boot.wim ein. Zentrale Kom-
ponenten, die bei einer regulären Win-
dows-Installation für einen geordneten
Systemstart sorgen, ersetzen Sie mit eige-
nen Kreationen: pecmd.exe zündet die
Stufen und bestückt unter anderem das
Startmenü. Analog kümmert sich penet-
work.exe ums Netzwerk.

Zu den Skripten: Der in Delphi (Bor-
lands Pascal IDE) geschriebene, ursprüng-
lich verwendete WinBuilder hatte diverse
Macken und der Quelltext war nicht zu-
gänglich. Mit PEBakery hat Hajin Jang An-
fang 2018 auf GitHub eine Winbuilder-
Alternative veröffentlicht, die er in C#
implementiert und unter GPL-Lizenz ge-
stellt hat. Das Programm hat sich zu einer
großartigen Alternative entwickelt. Wir
nutzen diese seit 2019.

PEBakery verhält sich, wo es darauf
ankommt, komplett kompatibel zum Win-
Builder und ist weitgehend frei von Ma-
cken. An bestehenden Skripten sind ver-
hältnismäßig wenig Änderungen notwen-
dig, um sie vom WinBuilder auf PEBakery
umzustricken. Spezielle Optionen, die
PEBakery bestimmte WinBuilder-Marot-
ten nachbilden lassen, helfen obendrein.

Gesamtstruktur
Die grundsätzliche Struktur eines Projekts
hat PEBakery beibehalten, also die Art und
Weise, wie die Skripte zu einem größeren
Ganzen zu bündeln sind: Ein Projekt be-
steht aus einem Verzeichnis unterhalb von
„Projects“ (etwa Projects\PhoenixPE) mit
einer Datei namens „script.project“ darin,
die das Gesamtprojekt beschreibt, etwa
das c’t-Notfall-Windows 2024.

Alle weiteren Skripte liegen in diesem
Verzeichnis oder in Unterverzeichnissen.
PEBakery liest diesen Projektbaum beim
Start vollständig ein und führt die in script.
project enthaltenen Anweisungen aus. Im
c’t-Notfall-Windows 2024 sorgen diese
dafür, dass die Willkommensnachricht er-
scheint und dem Nutzer Hinweise zur Be-
dienung gibt.

Zwei weitere Dateien sind wichtig: Im
Hauptverzeichnis des Gesamtprojekts
(etwa c:\ctnot) liegt die Datei PEBakery.
ini. Sie beschreibt den Namen des Projekts
beziehungsweise den Namen des Unter-
verzeichnisses (PhoenixPE) und einige
weitere Startoptionen für PEBakery.

Die zweite Datei, die im Pfad c:\ctnot\
Projects\PhoenixPE liegt, heißt folder.
project. Sie beschreibt weitere Ordner, die
zum Projekt gehören sollen und unterhalb
von c:\ctnot\Projects liegen müssen –
PhoenixPE schlägt hier MyApps vor, um
dort eigene Skripte abzulegen, die das
Projekt erweitern.

Skriptkern
Auf den ersten Blick ähneln Skripte INI-
Dateien, weil Sie in eckigen Klammern
gesetzte Abschnitte zur Gliederung ver-

wenden und Variablen sowie Optionen das
typische Format einer Zuweisung verwen-
den. In der Tat machen sich unter anderem
unsere Erweiterungen diese Ähnlichkeit
auch zunutze, indem Sie Funktionen zum
Bearbeiten von INI-Dateien auf Skripte
loslassen, um darin Anpassungen vorzu-
nehmen.

Der Abschnitt [Main] beschreibt die
Grunddaten eines Skripts: Dort steht, wie
es heißt (Title), was es tut (Description),
wer es geschrieben hat (Author), wann es
laufen soll (Level), ob es laufen soll
(Selected), ob es laufen muss (Mandatory),
welche Version es ist (Version) und wann
es geschrieben wurde (Date). Manche Zei-
len sind Konvention, andere wichtig fürs
Gesamtprojekt. Das Folgende ordnet das
bei Bedarf ein.

Im Abschnitt [Variables] werden Va-
riablen vorbelegt. Das ist immer dann
sinnvoll, wenn ein Skript Daten mehrfach
verwendet, die sich ändern können, zum
Beispiel Download-URLs. Variablen er-
kennen Sie in den Skripten daran, dass ihr
Name mit einem Prozentzeichen beginnt
und endet – sie ähneln Variablen in Batch-
Dateien, teilen aber keinen Namensraum,
kommen sich also nicht ins Gehege.

Sowohl PEBakery als auch WinBuil-
der kennen einen Satz vordefinierter Va-
riablen: In %BaseDir% steht der Name des
Wurzelverzeichnisses, zum Beispiel c:\
ctnot, %ProjectDir% verweist auf die Pro-
jektdateien, etwa c:\ctnot\Projects\Phoe-
nixPE. Über %ScriptFile% finden Skripte
den eigenen Dateinamen heraus.

Die vorgenannten Variablen und eini-
ge mehr kann ein Skript nicht verändern,
sie heißen auch „Fixed Variables“.
PEBakery definiert sie beim Projekt- oder
Skriptstart. Solche Variablen sind wie auch
im Abschnitt [Variables] in der script.pro-

 kompakt
	• Spezialisierte Skripte schrauben
unser Notfallsystem auf Basis von
PhoenixPE zusammen.

	• Die Skripte reichern dazu Microsofts
Preinstallation Environment mit
weiteren Windows-Komponenten
und zusätzlicher Software an.

	• Die Skriptsprache ist schräg, lässt
sich aber leicht erlernen, um das
Notfallsystem zu erweitern oder
anzupassen.

Über das Stiftsymbol lassen sich aus
PEBakery heraus, Skripte bearbeiten.
Für Vielschreiber ist es hilfreich Visual-
Studio Code als Editor zu verwenden.

c’t-Notfall-Windows erweitern﻿﻿﻿  |  Praxis

155c’t 2024, Heft 8

Template-Version: 114-CC2021

© Copyright by Heise Medien.

Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

ject-Datei definiert immer in allen Skrip-
ten sichtbar („Global Variables“). Variab-
len in regulären Skripten sieht nur das je-
weilige Skript.

Ein Skript muss Variablen nicht
zwangsläufig im Abschnitt [Variables] de-
finieren. Es kann das auch jederzeit über
den Aufruf Set,%MeineVariable%,"Mein
Text" tun – das Beispiel belegt die Variable
mit „Mein Text“ als Inhalt. Wenn das
Skript an den Aufruf die Option GLOBAL mit
einem Komma anhängt, dann können
auch andere Skripte auf den Inhalt zugrei-
fen und die Variable verändern. Eine über-
sichtliche Liste der Variablen liefert
PEBakery in den Logs.

Die Handlungsanweisungen, die ein
Skript ausführt, landen in einem dritten
Abschnitt: [Process]. Hier kann ein Skript
in beliebiger Weise die verschiedenen Be-
fehle kombinieren, die PEBakery bereit-
stellt: Archive herunterladen, entpacken,
Dateien kopieren, Textdateien manipulie-
ren und externe Programme ausführen.

Skripte können die Registry des ent-
stehenden Notfallsystems manipulieren,
Bedingungen prüfen und passende Skript-
pfade ausführen, WIM-Dateien bearbei-
ten, in Grenzen rechnen, Listen bearbeiten
und in Schleifen durchexerzieren. In um-
fangreichen Skripten sollte ein Autor wei-
tere Abschnitte einführen, die ein Skript
wie ein Unterprogramm aufrufen kann.

In vielen Skripten findet sich ein wei-
terer Abschnitt, nämlich [Interface]. Er

beschreibt die Bedienoberfläche, die vom
Nutzer wählbare Optionen darstellt. Einige
Skripte bauen daraus mehrseitige Dialoge,
um dort Details festzulegen; viele kommen
ganz ohne aus. Niemand muss für die
Oberfläche kryptische Texte verfassen: Ein
in PEBakery enthaltener interaktiver Edi-
tor für die Bedienelemente hilft dabei.

Es gibt noch einige weitere Abschnit-
te, die beim Bearbeiten von Skripten in
PEBakery entstehen, um beispielsweise
Logos für das Skript zu verwalten und zu
speichern. Es ist sogar möglich, Binärda-
teien in ein Skript hochzuladen, es wird
dann als Text Base64-kodiert als Ab-
schnitt in die reine Datei eingefügt (ähn-
lich wie Attachments in E-Mails) – das
Skript kann mit speziellen Befehlen hinzu-
gefügte Binärdaten extrahieren.

Skriptrang
Die Reihenfolge, in der PEBakery einen
vollständigen Bausatz ausführt, hängt von
zwei Faktoren ab: Die grobe Reihenfolge
gibt „Level“ im [Main]-Abschnitt vor. Im
Level 1 bis 4 laufen Vorbereitungen für das
Grundsystem, in Level 5 ergänzt ein Pro-
jekt üblicherweise Programme, in Level 6
fügt es Treiber hinzu, von Level 7 bis 9 wird
aufgeräumt und schließlich die finale ISO-
Datei gebaut. Auf Level 0 können Ent-
wickler Skripte deponieren, die nicht lau-
fen sollen und die PEBakery nicht anzeigt,
deren Funktionen aber andere Skripte
aufrufen können.

Es hat sich eingebürgert, innerhalb
der Level den einzelnen Skriptdatei- und
Verzeichnisnamen dreistellige Zahlen vo-
ranzustellen. Die Sortierung gibt die Rei-
henfolge vor, in der PEBakery die Skripte
ablaufen lässt. Großzügige Abstände er-
leichtern es, eigene Skripte dazwischen-
zuschieben.

Grundsätzlich kann ein Skript im
Gesamtkontext eines Projekts laufen,
wenn der Benutzer den Build-Knopf im
PEBakery-Fenster betätigt. Alternativ
lässt sich ein einzelnes Skript über den
Play-Knopf direkt starten. PEBakery führt
das Skript dann auch unabhängig davon
aus, ob es im Abschnitt [Main] als „Selec-
ted“ markiert ist oder nicht.

Der Start eines einzelnen Skripts er-
leichtert das Testen erheblich, weil bis
zum Ausführen des frisch ergänzten Codes
nicht immer das ganze Projekt laufen
muss. Aber: Skripte verändern Dateien im
Projektbaum, laden sie herunter, packen
sie aus und modifizieren sie. Ein Skript
sollte deshalb, wenn es einzeln läuft, auch
immer im Gesamtkontext getestet wer-
den. Und das in zwei Situationen: einmal
in einem sauberen Projektbaum und ein-
mal in einem bereits benutzten.

Ein sauberes Skript sollte sich nicht
auf einen bestimmten Zustand verlassen,
sondern immer sicherstellen, dass er be-
steht: Die meisten Skripte prüfen zunächst
deswegen, ob eine Datei schon herunter-
geladen ist, bevor sie diese entpacken. Es
kommt aber vor, dass unvorhergesehene
Dinge passieren: Reißt ein Download ab,
könnte der Entpackschritt fehlschlagen,
weil die Datei unvollständig ist. Für solche
Situationen sind die wenigsten Skripte ge-
wappnet und nehmen in Kauf, dass dann
der Projektlauf mit einem Fehler abbricht
– eine technisch mögliche Absicherung der
Downloads per Prüfsumme erfolgt aus
pragmatischen Gründen nicht.

PhoenixPE und somit das c’t-Notfall-
Windows versuchen bei einem vollständi-
gen Projektlauf, die wesentlichen Log-
Dateien zu einem komprimierten Paket zu
schnüren. Das lässt sich bei anhaltend
fehlschlagenden Bauversuchen im Unter-
verzeichnis „log“ per E-Mail für eine Sup-
portanfrage verschicken.

Läuft nur ein einzelnes Skript, kommt
der Log-Viewer von PEBakery ins Spiel. Er
zeigt auf Wunsch in HTML-Form die Aus-
gaben eines Skripts an. So können Sie den
Ablauf eines selbst entwickelten Skriptes
nachträglich verfolgen, aber ebenso gut
studieren, wie sich andere Skripte verhal-

Um die Bedienoberfläche für ein Skript zu erstellen, bietet PEBakery einen
eigenen grafischen Editor, um Elemente wie Eingabefelder zu positionieren
und das Aussehen komfortabel zu gestalten.

Praxis  |  c’t-Notfall-Windows erweitern﻿﻿﻿

c’t 2024, Heft 8156

Template-Version: 114-CC2021

© Copyright by Heise Medien.

Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

ten. Letzteres ist essenziell für den Ein-
stieg in die Skripterei: Was Sie aus funk-
tionierenden Skripten abschreiben kön-
nen, brauchen Sie sich nicht selbst auszu-
denken.

Skriptgerüst
PhoenixPE bringt obendrein Hilfen mit,
ein Gerüst für typische Skripte zu generie-
ren. Sie finden diese im Projektbaum unter
PhoenixPE/Toolbox/ScriptFactory. Um
ein Skriptgerüst zu erzeugen, reicht es, die
Felder auszufüllen und den Knopf „Create
Script“ zu betätigen. Die Varianten der
Skripte sind selbst erklärend, ebenso die
meisten Felder. Ein Hinweis zu „Script
Folder“: Das Feld steuert, ob das Skript
zusätzlich unterhalb des per Level vorge-
gebenen Verzeichnisses im Projektbaum
in ein weiteres Unterverzeichnis gesteckt
wird (wie sie in Applications existieren).

PEBakery ordnet ein frisch erstelltes
Skriptgerüst direkt in den Projektbaum
ein. Sollten Sie sich beim Anlegen vertan
haben, müssen Sie durch die Aktion an-
gelegte Dateien und Verzeichnisse im
Dateisystem selbst wegräumen. Innerhalb
von PEBakery gibt es dafür keine Funktio-
nen. PEBakery bemerkt solche Änderun-
gen nicht von sich aus. Sie müssen per
Klick auf den Refresh-Knopf in der oberen
Werkzeugleiste nachhelfen. Das Gleiche
gilt für den Fall, dass Sie Ihre Skripte direkt
im Dateisystem ergänzen.

Sämtliche Bearbeitungsschritte für
ein Skript sind aus PEBakery heraus zu-
gänglich, entweder auf der Skript-Seite
oder per Kontextmenü im Projektbaum.
PEBakery selbst liefert Funktionen zum
Bearbeiten der Skripteigenschaften („Edit
Script Properties“), lädt etwa Logos hoch,
setzt Optionen aus dem Abschnitt [Main],
ordnet Bedienelemente fürs Skript an und
verwaltet Dateianhänge in Ordnern.

Zum Bearbeiten der Quelltexte („Edit
Script Source“) spannt PEBakery Notepad
ein, wenn kein Visual Studio Code instal-
liert ist. VS Code ist sehr zu empfehlen,
denn es gibt sogar eine Erweiterung für
PEBakery-Skripte, die nicht nur die Sprach-
elemente farblich aufhübscht, sondern
beim Schreiben von Skripten auch gleich
mit Vorschlägen hilft; so lernt sich die ge-
wöhnungsbedürftige Syntax bequemer.

Skriptbeispiel
Das folgende konkrete Beispiel beschreibt
die Schritte zur Integration von RustDesk
(einer Alternative zu AnyDesk). Bevor Sie
sich ans Werk machen, sollten Sie auspro-

bieren, wie sich die Software verhält, wenn
Sie diese manuell ins Notfallsystem brin-
gen: Kopieren Sie die EXE-Datei in ein
neues Verzeichnis auf einen mit dem Bau-
satz erzeugten Stick, booten Sie den und
starten Sie das Programm: RustDesk.exe
meckert, weil ihm DLLs fehlen. Den Feh-
lermeldungen nach fehlen glu32.dll und
opengl32.dll.

Diese DLLs aus dem Lieferumfang
von Windows können Sie nun versuchs-
weise ins Notfallsystem kopieren. Idealer-
weise bedienen Sie sich aus dem Datei-
fundus einer Windows-Installation mit
identischer Version wie der, die Sie an den
Bausatz verfüttern. Es genügt, diese DLL-
Dateien in das Verzeichnis zu kopieren, in

dem auch die heruntergeladene Rust-
Desk-Datei liegt – das Programm ist er-
freulicherweise nicht kompliziert in einem
Installer verpackt.

Trotz der beiden ergänzten DLLs wird
RustDesk nicht starten. Es gibt jedenfalls
keinen Mucks von sich. Hier hilft es dann
nur, tiefer in die Ursachenforschung ein-
zusteigen: Dafür eignet sich das Sysinter-
nals-Werkzeug Procmon gut. Es zeichnet
die Funktionsaufrufe, die ein Programm
tätigt, auf und zeigt sie an. Procmon kön-
nen Sie im laufenden Notfallsystem he
runterladen und starten – es braucht selbst
keine Installation und alle von Procmon
benötigten Bibliotheken stecken im Not-
fallsystem. Eine Serie von Einführungs-

[Main]

Title=RustDesk

Author=ps@ct.de

Level=5

Version=1.1.0.0

Description=Remote desktop software and open source TeamViewer alternative

Date=2023-11-04

Selected=False

Mandatory=False

[Variables]

%ProgramFolder%="RustDesk"

%ProgramExe%="rustdesk.exe"

%DownloadURL%=https://github.com/rustdesk/rustdesk/releases/download/1.2.3/

rustd

%ConfigFile%="RustDesk2.toml"

[Process]

Echo,"Processing %ScriptTitle%..."

If,%cb_RunFromRam%,Equal,True,RunFromRam

If,%cb_AlwaysDownload%,Equal,True,DirDeleteEx,"%ProgramsCache%\%ProgramFolder%"

If,Not,ExistFile,"%ProgramsCache%\%ProgramFolder%\%ProgramExe%",Run,%ScriptFile%

FileCopy,"%ProgramsCache%\%ProgramFolder%\%ProgramExe%","%TargetPrograms%\%Progr

RequireFileEx,AppendList,\Windows\System32\sas.dll

RequireFileEx,AppendList,\Windows\SysWOW64\sas.dll

RequireFileEx,AppendList,\Windows\System32\opengl32.dll

RequireFileEx,AppendList,\Windows\SysWOW64\opengl32.dll

RequireFileEx,AppendList,\Windows\System32\glu32.dll

RequireFileEx,AppendList,\Windows\SysWOW64\glu32.dll

RequireFileEx,ExtractList

[DownloadProgram]

Echo,"Downloading %ScriptTitle%..."

WebDownload,%DownloadURL%,"%ProgramsCache%\%ProgramFolder%\%ProgramExe%",NOERR

If,Not,#r,Equal,200,Halt,"Download failed: The code returned was [#r]."

Das hier nur abgespeckt und nicht in voller Breite wiedergegebene Skript zur
Integration von RustDesk steckt bereits im Bausatz unseres Notfallsystems.

c’t-Notfall-Windows erweitern﻿﻿﻿  |  Praxis

157c’t 2024, Heft 8

Template-Version: 114-CC2021

© Copyright by Heise Medien.

Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

artikeln zu Procmon haben wir in [2, 3, 4]
veröffentlicht, hier die Kurzfassung.

Schalten Sie nach dem Start von Proc-
mon unbedingt mit Strg+E die automa-
tisch startende Aufzeichnung von Ereig-
nissen ab – es speichert alles im RAM, und
darin geht schnell der Platz aus. Erst kurz
bevor sie einen weiteren Startversuch von
RustDesk unternehmen, lassen Sie Proc-
mon wieder die Ereignisse aufzeichnen.
Nach dem Start beendeten Sie diese
schnell wieder.

Konstruieren Sie nun einen Filter in
Procmon, um die angezeigten Ergebnisse
einzugrenzen. Bei uns hat sich bewährt,
den „Process Namen“ auf das untersuch-
te Programme zu beschränken. RustDesk
tritt hier in zwei Varianten an, unter dem
Originalnamen mit langer Versionssigna-
tur und schlicht als rustdesk.exe. Der letz-
te Name ist der hilfreiche. Als weitere
Filterkriterien verwenden wir „Operation“
und dabei die Funktion „QueryDirectory“
und schauen uns nur fehlgeschlagene Auf-
rufe an („Result is not SUCCESS“).

Mit den genannten Kriterien finden
Sie sehr schnell von einem Programm ver-
wendete DLL-Dateien, die es benötigt,
nicht findet, aber auch nicht selbst in einer
Fehlermeldung konkret benennt – im Fall
von RustDesk ist das die Datei sas.dll.
Wenn Sie diese DLL neben den zuvor
schon genannten in das Verzeichnis wer-
fen, in dem RustDesk liegt, startet die Soft-
ware im Notfallsystem und lässt sich rudi-
mentär ausprobieren (um sicherzustellen,
dass nicht noch weitere Dateien fehlen).

Sie könnten nun diese DLLs als Datei-
en einfach als Anhang in dem Skript auf-
nehmen, aber das ist aus mehreren Grün-
den doof: Zum einen stellt das eine Lizenz-
verletzung dar; Sie dürfen nicht einfach
Dateien aus dem Windows-Lieferumfang
einbauen – jedenfalls, wenn Sie den Bau-
satz beziehungsweise Ihr Skript auch an-
deren zur Verfügung stellen möchten.
Zum anderen müssten Sie dann selbst si-
cherstellen, dass die aus einer zum gebau-
ten Notfallsystem passenden Windows-
Version stammen.

Verpackungskünstler
Der Einbau von RustDesk über ein Skript
ist dann doch etwas aufwendiger: Ausge-
hend von einem generierten Skriptgerüst
mit der Vorlage „Simple Download App“
öffnen Sie das Skript am besten im Editor,
etwa Visual Studio und gehen es Zeile für
Zeile durch. Alle Stellen, an denen Sie sich
zu schaffen machen sollten, sind mit
einem Kommentar // TODO versehen, etwa
den Namen für den Ordner, den der Bau-
satz für das Programm anlegen soll.

Sie werden dann schnell über eine Ge-
meinsamkeit vieler Skripte stolpern: Sie
behandeln 32- und 64-Bit-Programmver-
sionen separat (die TODOs fordern Datei-
namen und Download-URLs für die jewei-
lige Version). Das hat oft historische Grün-
de. Grundsätzlich würde es genügen, die
32-Bit-Version eines Programms ins Not-
fallsystem einzubauen, weil sie auch in der
64-Bit-Ausgabe des Systems funktionie-
ren wird (anders als in einem regulären

PE); die 64-Bit-Ausgabe integriert
schließlich Windows-32-On-Windows-64
(WOW64) ins Notfallsystem.

Mit dem aktuellen Bausatz haben wir
uns allerdings entschlossen, nur noch
64-Bit-Versionen zu unterstützen. Das im
Folgenden beschriebene RustDesk-Skript
lädt deshalb nur die 64-Bit-Programmver-
sion herunter und nimmt keine Rücksicht
auf eventuelle 32-Bit-Eigenarten – mit
einer Ausnahme: Sie ergänzt stets auch
DLLs, die für 32-Bit-Programme nötig
wären – schließlich ist eben nicht jedes
Programm im ganzen System auch eine
64-Bit-Ausgabe; ohne diesen Kniff würden
32-Bit-Programmbestandteile streiken,
wenn sie die 32-Bit-DLLs nicht finden.

Zeilen, um die von RustDesk vermiss-
ten DLLs ins Notfallsystem zu integrieren,
sind im generierten Skript nicht enthalten.
Fügen Sie dazu im Abschnitt [Process]
zwischen den Kommentaren „Extract“
und „Settings“ passende Zeilen ein (siehe
Listingkasten). Die sorgen dafür, dass
beim Bauen die genannten DLLs aus der
verwendeten Windows-Quelle genom-
men und in das Projekt eingebaut werden.

Die Aufrufe von RequireFile

Ex,AppendList fügen Sie einer Liste zur
Bearbeitung hinzu, der letzte Aufruf mit
ExtractList als zweitem Parameter erle-
digt den Einbau. Auf diese Weise „ziehen“
viele Skripte Windows-Original-Dateien
beim Bauen ins Notfallsystem. Die Befeh-
le sind als Makros im Projekt definiert und
rufen im Hintergrund Funktionen auf, die
WIM-Dateien bearbeiten.

Um das Skript für die Veröffentli-
chung schön zu machen, können Sie noch
ein zum Programm passendes Logo ein-
bauen. Wir haben kurzerhand eines aus
dem GitHub-Repository genommen. Kli-
cken Sie zum Einbinden das Stiftsymbol
rechts im Kopf des Skriptes an und rufen
Sie die Funktion „Edit Script Properties“
auf. Im unteren Bereich des dann aufge-
henden Fensters können Sie eine passen-
de Datei auswählen und so in das Skript
aufnehmen lassen.

Die hier nicht vollständig wiederge-
gebenen Zeilen der Skriptdatei befassen
sich damit, eine Konfigurationsdatei zu
erstellen, die RustDesk den Weg zu einem
privaten Vermittlungsserver weist. Dessen
Daten können Nutzer in PEBakery einge-
ben. Für die Integration von RustDesk sind
andere für ein Skript typische Aktionen
nicht nötig, etwa das Erzeugen und Setzen
von Schlüsseln in der Registry des Notfall-
systems.

Mit einem Filter im Sysinternals Processmonitor findet man schnell heraus,
welche DLLs ein Programm laden möchte, aber nicht findet und auch nicht
lauthals reklamiert.

Praxis  |  c’t-Notfall-Windows erweitern﻿﻿﻿

c’t 2024, Heft 8158

Template-Version: 114-CC2021

© Copyright by Heise Medien.

Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

Wenn Sie eine Skript-Datei testen wol-
len, sollten Sie das zunächst in einem Bau-
verzeichnis tun, das bereits die Dateien
eines erfolgreichen Laufs beinhaltet. So
ist sichergestellt, dass ein Skript im Kon-
text korrekt arbeitet. Wenn Sie das über-
prüft haben, sollte im zweiten Schritt ein
Test mit einem frischen Bauverzeichnis
folgen – so gewährleisten sie, dass Ihr
Skript auch auf anderen Rechnern funk-
tioniert.

Detektivarbeit
Vom Handwerklichen abgesehen besteht
die Kunst, eigene Skripte in den Bausatz zu
integrieren, vor allem in Detektivarbeit:
In hartnäckigen Fällen hilft Procmon aus
den Sysinternals-Werkzeugen: Lassen Sie
Procmon im Notfallsystem das betrachte-
te Programm beobachten. Schauen Sie sich
zunächst fehlgeschlagene Operationen an.
Oft liefern diese Fehlschläge Hinweise
auf weitere fehlende DLLs und eventuell
zu ergänzende Registry-Schlüssel. Hier
kommt es nicht auf Vollständigkeit an, son-
dern vor allem, die wirklich nötigen Teile
Schritt für Schritt zu identifizieren.

Der letzte Schritt zu einem perfekten
Skript besteht dann darin, die gewonne-
nen Erkenntnisse anzuwenden: Sie müs-
sen Wege finden, aus dem Download eines
Installationspakets die Dateien herauszu-
lösen. Die diversen Skripte in PhoenixPE
und im Notfall-Windows verwenden dazu
einen ganzen Satz von Spezialprogram-
men, falls Werkzeuge wie 7-Zip scheitern;
für einige bringt PhoenixPE sogar spezia-
lisierte Makros mit.

Behalten Sie bei all dem im Auge,
unter welcher Lizenz die Software steht,
die Sie ins Notfallsystem einbauen. Freie
Software, die ohne Einschränkung weiter-
verbreitet werden darf, können Sie wie
auch andere Binär- oder Konfigurations-
dateien als Dateianhang an ein Skript an-
hängen. Das allerdings erschwert Nutzern
das Updaten von Programmversionen. Es
ergibt also allenfalls bei zeitloser Software
überhaupt Sinn.

Ein Hinweis noch zur Integration
neuer Programme in die Menüstruktur des
c’t-Notfall-Windows: Die in PEBakery er-
zeugten Skriptgerüste sehen dafür die
PhoenixPE-eigenen Methoden vor. Wir
verwenden einen eigenen Ansatz, um die
Menüs des Notfallsystems übersichtlicher
zu gestalten. Die Datei pecmd_links.ini,
die Sie im Unterverzeichnis Custom im
Bauverzeichnis respektive im Bausatz-
Zip-Archiv finden, beschreibt die Menü-

einträge. Ergänzen Sie Ihre Skripte analog
zu den vorhandenen Einträgen.

Die Menüeinträge sind Teil der Kon-
figuration für das eingangs schon erwähn-
te pecmd.exe. Das Programm startet die
Bedienoberfläche des Notfallsystems. In
seiner vollständigen Konfigurationsdatei
landen die Einträge aus pecmd_links.ini
und pecmd_pins.ini (für ans Startmenü
angepinnte Programme, ebenfalls aus
dem Custom-Verzeichnis) kombiniert mit
während des Bauens generierten Einträ-
gen. Um zum Beispiel beim Start des Not-
fallsystems automatisch Programme aus-
zuführen, ist pecmd.ini die richtige Adres-
se, eine Zeile mit EXEC= genügt.

Für die Bearbeitung von pecmd.ini
gibt es mehrere Möglichkeiten. Am ein-
fachsten gelingt sie, indem Sie sie im Pro-
jektbaum in PEBakery links unter Shell
PECMD auswählen und dann eine benut-
zerdefinierte Datei hinzufügen. Ein Bei-
spiel dafür spuckt der Knopf „Sample
Config“ aus. Allzu viel Aufmerksamkeit
sollten Sie den Mechanismen aber nicht
widmen: Der PhoenixPE-Entwickler Jona-
than Holmgren krempelt den Bereich ge-
rade um und will weg vom als Closed
Source entwickelten pecmd.exe.

Wenn Sie die künftige Registry des
Notfallsystems bearbeiten wollen, gibt es
dabei etwas Wichtiges zu Beachten: Der
Bausatz bindet Teile dieser vorüberge-
hend in die Registry des Bausystems ein.
Es ist wichtig, den richtigen Zweig anzu-
sprechen, also den dazu eingebundenen
Teilast. Und: Anders als in einem laufen-
den Windows ist dann zum Beispiel nicht
CurrentControlSet gefragt, sondern Con-
trolSet001. Nützlich kann das zum Bei-
spiel sein, um den Suchpfad (PATH) im

Notfallsystem für eigenhändig ergänzte
Programme zu erweitern.

Harte Nüsse
Ein Tipp noch zur vom Winbuilder einge-
führten „Sprache“ der Skripte: Die ist ge-
wöhnungsbedürftig. So lässt sie Funktio-
nen für Selbstverständlichkeiten in ande-
ren Skriptsprachen wie zeilenweises Lesen
von Textdateien vermissen. Die Skripte des
Bausatzes enthalten dazu kreative Lösun-
gen und bemühen im Zweifelsfall externe
Skripte, etwa Batch-Dateien, PowerShell
oder andere Werkzeuge. Eine Sprach
referenz finden Sie auf GitHub in den
PEBakery-Repositories (siehe ct.de/ydzn).

Eine letzte Empfehlung: Tasten Sie
sich langsam heran. Portable Software
lässt sich leicht integrieren. Komplexere
Anwendungen, die Treiber oder eigene
Dienste mitbringen oder auf solchen auf-
bauen, sind schwer in die PE-Welt zu über-
tragen – nicht immer gelingt es. Unsere
To-do-Liste umfasst unter anderem Be-
dienhilfen für Blinde, die wir bis jetzt nicht
zum Laufen gebracht haben. Über sach-
dienliche Hinweise oder fertige Skripte
freuen wir uns sehr.	  (ps@ct.de) 

Literatur
[1]	 Axel Vahldiek, Altes im Neuen,32-Bit-Anwendun-

gen unter 64-Bit-Windows, c’t 23/2019, S. 150
[2]	 Axel Vahldiek, Unter dem Mikroskop, Windows

analysieren mit dem Process Monitor – Teil 1,
c’t 16/2017, S. 148

[3]	 Axel Vahldiek, Schärfer stellen, Windows analy-
sieren mit dem Process Monitor – Teil 2,
c’t 17/2017, S. 154

[4]	 Hajo Schulz, Noch mehr Durchblick, Windows
analysieren mit dem Process Monitor – Teil 3,
c’t 18/2017, S. 162

Projektseite mit Downloads, Forum und
Artikelverweisen: ct.de/ydzn

Filter im Processmonitor helfen, die relevanten Daten zu isolieren, etwa fehl-
schlagende Versuche von powercfg /batteryreporpowercfg /batteryreport, weitere DLLs zu laden.

c’t-Notfall-Windows erweitern﻿﻿﻿  |  Praxis

159c’t 2024, Heft 8

Template-Version: 114-CC2021

© Copyright by Heise Medien.

Persönliches PDF für Christoph Lehnberger aus 76855 Annweiler

